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ABSTRACT 

A reliability-based design optimization (RBDO) of a monopile foundation for offshore wind 

turbines is conducted to account for the uncertainties in the design process. The RBDO aims at 

optimizing the cost of construction, installation and failure with respect to the ultimate limit state 

of a monopile foundation while accounting for the effects of uncertainties in soil parameters and 

lateral loads. The soil parameters are interpreted via a probabilistic link which is composed of a 

random field model of CPTU measurements and the transformation uncertainty relating soil 

parameters to CPTU measurements. The maximum likelihood method is employed to estimate the 

random field parameters of CPTU measurements. Probabilistic models for soil parameters and 

lateral loads are coupled with the nonlinear p-y finite element model to predict the response of a 

monopile foundation. The RBDO problem is solved by coupling the Subset Simulation reliability 

method with the Simulated Annealing stochastic optimization algorithm. 

Keywords: reliability, optimization, RBDO, CPT, random field 

 

1 INTRODUCTION 

Geotechnical designs are subjected to 

uncertainties originating from various 

sources (e.g., inherent soil variability, 

measurement errors, transformation 

uncertainty, modelling assumptions). In 

geotechnical practice it is common to 

evaluate the effects of uncertainties on a 

design with a semi-probabilistic methodology 

commonly known as the partial factor of 

safety approach. In the partial factor of safety 

approach, the uncertainties in the design are 

quantified implicitly by partial safety factors, 

as defined in several design codes (e.g., 

Eurocode). Alternative to the factor of safety 

approach is the reliability-based design which 

explicitly accounts for the effects of 

uncertainties in a design. The application of 

the reliability-based design is considered as 

advantageous because it provides an insight 

in the likelihood of failure as a probabilistic 

measure (Fenton & Griffiths, 2008). In this 

study, the application of the reliability-based 

design is coupled with optimization in a 

procedure commonly referred to as 

reliability-based design optimization 

(RBDO). The goal of the RBDO is to 

optimize performance criteria of a 

geotechnical design (e.g., design cost) while 

explicitly accounting for the effects of 

uncertainties.  

In the context of the offshore wind industry, 

the application of the RBDO is beneficial due 

to standardized structural components (e.g., 

tower, monopile). However, in the majority 

of studies, deterministic optimization is 

considered. For example, Uys, Farkas, 

Jarmai, and Van Tonder (2007) optimized the 

weight and the cost of an offshore wind 

turbine tower. Negm and Maalawi (2000) 

applied the interior penalty algorithm to 

optimize the natural frequencies of the wind 

turbine. Fischer et al. (2012) examined the 

advantages of design optimization design by 

minimizing the weight of the wind turbine 

tower and the monopile. Søensen and Tarp-

Johansen (2005) conducted an RBDO to 

minimize the inspection, construction, 

maintenance, and failure costs of a wind 

turbine tower with a gravity-based 

foundation. 

This study performs an RBDO of a monopile 

foundation to minimize the design costs with 
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respect to a reliability constraint. The design 

cost is expressed as a function of the 

monopile diameter, wall thickness, embedded 

length, and random parameters (i.e., lateral 

load and soil parameters). Special attention 

was given to the uncertainties associated with 

the interpretation of soil parameters relevant 

for the design of monopile foundations from 

CPTU measurements. The RBDO is 

implemented by coupling the Simulated 

Annealing (SA) optimization method with 

the Subset Simulation (SS) reliability 

method. 

2 MONOPILE FOUNDATIONS FOR 

OFFSHORE WIND TURBINES 

2.1 Sheringham Shoal Offshore Wind Farm 

The RBDO of a monopile foundation from 

the Sheringham Shoal Offshore Wind Farm 

(SSOWF) is performed in this study. The 

SSOWF is an offshore wind farm located in 

the North Sea, 20 km north of the Norfolk 

coast, offshore UK. Based on the 

geotechnical conditions at the site and the 

conducted site investigations three main soil 

units are identified at the site, as presented in 

Figure 1. The Bolders Bank Formation 

(BDK) is a soil unit found at the seabed. The 

BDK formation is primarily composed of 

stiff clay with sand and gravel pockets. The 

Egmond Ground Formation (EG) is a soil 

unit found below the BDK formation. The 

EG formation is a mixture of dense to very 

dense sands. The Swarte Bank formation 

(SBK) is a soil unit found below the EG 

formation. The SBK formation is a mixture 

of hard silty clay with occasional marine 

interglacial sediments (Saue & Meyer, 2009). 

2.2 Numerical pile-soil model 

Given that the monopile foundations for 

offshore wind turbines are dominantly loaded 

laterally, the response of a monopile 

foundation is commonly simulated by the p-y 

method (e.g.,DNV, 2010). The p-y method 

models the response of the soil domain to the 

lateral loading of the pile by a series of 

nonlinear soil springs. The material behavior 

of the soil springs is defined by the p-y 

curves which are developed for different soil 

types (e.g., clay, sand) and loading conditions 

(i.e., static, cyclic). In this study, the static p-

y curves for stiff clay are implemented to 

simulate the soil response of the BDK and 

the SBK soil units. On the other hand, the 

static p-y curves for sand are implemented to 

evaluate the response of the EG soil unit. 

 

 
Figure 1: Three main soil units at the SSOWF 

site. 

 

In addition to several empirical parameters 

and the soil unit weight, the p-y curves for 

stiff clay are a function of undrained shear 

strength, su, while the p-y curves for sand are 

a function of the friction angle φ. Given that 

soils exhibit spatial variability due to the 

randomness of geological processes involved 

in the creation of the soil formations at the 

SSOWF, the spatial variability of su and φ 

and their effect on the monopile response will 

be examined. Other parameters of the p-y 

curves are considered to be deterministic 

because of a relatively low variability (e.g., 

unit weight) or due to their empirical and 

model dependent origins. 

The monopile material is steel with density of 

ρs=7800 kN/m
3
, and elastic behavior defined 

by Young’s modulus of Ep=2.1 x 10
5
 MPa 

and Poisson’s ratio υs=0.3. 
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3 PROBABILISTIC SOIL PARAMETER 

INTERPRETATION FROM CPT 

DATA 

The derivation of soil parameters for the 

design of monopile foundations relies 

primarily on the data obtained from the 

CPTU profiles at the locations of the planned 

wind turbines and several boreholes at the 

site. Soil samples extracted from the 

boreholes are commonly used to calibrate the 

relations between the CPTU measurements 

and soil parameters such that the soil 

parameters can be estimate at the planned 

locations of the wind turbines. A probabilistic 

interpretation of su and φ based on CPTU 

data is examined in this study. The 

probabilistic interpretation includes the 

inherent variability of the CPTU 

measurements and the transformation 

uncertainty associated with the relations 

between and su and φ and the CPTU 

measurements. 

3.1 su interpretation 

The relation between the CPTU 

measurements and su can be established as 

follows (e.g.,Lunne, Robertson, & Powell, 

1997): 
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where qt (MPa) is the corrected cone tip 

resistance, σv0 (kPa) is the in-situ overburden 

pressure, while Nk is the empirical cone 

factor. The parameters of the right site of Eq. 

1 are associated with uncertainties. The 

uncertainties in qt are a result of both the 

inherent soil variability and the measurement 

error. Although σv0 can be influenced by 

various sources of uncertainty, a 

deterministic stress state is assumed, 

dependent on the soil unit weight, soil depth 

and water level. Given its empirical nature Nk 

is associated with uncertainties. A study on 

the values of Nk in Kulhawy, Birgisson, and 

Grigoriu (1992) reveals that the uncertainty 

of Nk depends on the soil test used to estimate 

su. Table 1 presents the mean and CoV values 

of Nk for different soil tests (Kulhawy et al., 

1992): 

 
Table 1: Mean and CoV values of Nk for different 

su tests from Kulhawy et al. (1992). 

su test Mean CoV 

CIUC 12.674 35 

UU 19.531 29 

VST 11.038 40 
CIUC, consolidated isotropic undrained triaxial 

compression test, UU unconsolidated undrained 

triaxial compression test, VST vane shear test. 

 

The derivation of su values from qt 

measurements is based on the assumption 

that qt measurements are an outcome of a 

lognormal random field. The corresponding 

lognormal random field of qt is defined by a 

deterministic trend, μqt, standard deviation, 

σqt, and the correlation length, θqt. 

The parameters of the qt random field are 

estimated with the maximum likelihood 

method from the values of the corresponding 

normal random filed lnqt by assuming the 

exponential correlation model (e.g.,Fenton & 

Griffiths, 2008). Given the maximum 

likelihood estimates of the mean, μlnqt, 

standard deviation, σlnqt, and the correlation 

length, θlnqt, the parameters of the lognormal 

random field can be derived as follows. 
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Nk is assumed to be lognormally distributed 

with a site-specific mean, μNk, with the CoVNk 

as reported in Table 1. Given that σv0 is 

deterministic, and both qt and Nk are 

lognormally distributed the natural logarithm 

transformation of Eq. 1 can be utilized to 

derive the parameters of su: 

 

 0ln ln lnu t v ks q N    (3) 

 

Since qt is lognormally distributed and σv0 is a 

deterministic value, (qt-σv0) is lognormally 

distributed with the following parameters: 
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Since both terms in the right side of Eq. 3 are 

normally distributed, lnsu is normally 

distributed with the following parameters: 
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where μln(qt-σv0) and σln(qt-σv0) are the 

parameters of ln(qt-σv0), while μlnNk and σlnNk 

are the parameters of lnNk. The parameters of 

ln(qt-σv0) are calculated as follows:  
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The parameters of lnNk are calculated as 

follows: 
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It is assumed that the transformation does not 

affect the autocorrelation properties, θsu=θqt. 

Figure 2 present a realization of an su random 

field based on the following maximum 

likelihood estimates of a lognormal random 

field fitted to a CPTU at the SSOWF site; 

μqt=1.9 MPa, σqt=0.6 MPa, and θlnqt=1. 

For the BDK and SBK soil units the values of 

μNk=15 and CoVNk=0.35 are selected based on 

the available laboratory test data from the 

SSOWF site (Saue & Meyer, 2009). 

 

 
Figure 2: Example su profile. 

3.2 φ interpretation 

The value of φ is interpreted from the CPTU 

measurements based on the relations 

proposed by Robertson and Campanella 

(1983). The value of φ is shown to be 

dependent on the value of qt scaled by the 

effective in-situ stresses, σ’vo. 

 

After examining the established relation 

between φ and qt, as presented in Figure 3, it 

is observed that a relatively simple regression 

model can be employed to approximate the 

relation. The regression model has the 

following formulation: 
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where ε is the transformation uncertainty 

which accounts for the model error and the 

regression model error. ε is modeled as a 

normal random variable with zero-mean and 

standard deviation σε=2.8°, as reported in 

Kulhawy and Mayne (1990). It is important 

to note that the regression model is valid only 

for the range of φ presented in Figure 3, 

30°≤φ≤50°. 
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Figure 3: Relation between β=qt/σ’v0 and φ. 

 

The statistical parameters of φ are derived by 

assuming a deterministic stress profile σ’vo 

and that qt measurements are an outcome of a 

lognormal random field. As discussed in 

Section 3.1, the parameters of the lognormal 

random field can be estimated with the 

maximum likelihood method.  

Given that qt is lognormally distributed while 

ε is normally distributed it follows from Eq. 8 

that φ is normally distributed with the 

following parameters: 
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where μlnqt and σlnqt are the mean and 

standard deviation of lnqt which are 

estimated with the maximum likelihood 

method. It is assumed that the transformation 

does not affect the autocorrelation properties, 

θφ=θqt.  

An example random field realization of φ is 

present in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Example φ profile. 

4 RANDOM LOAD 

The monopile in this study is loaded laterally 

with a load composed of a horizontal force H 

and a bending moment M=H∙30 m. H is 

assumed to be random and distributed 

according to the Gumbel distribution with the 

mean μH=2500 kN and CoVH=0.2. 

5 RBDO OF A MONOPILE 

FOUNDATION 

The RBDO of a monopile foundation is 

conducted to minimize the total cost with 

respect to a set of monopile design 

parameters t=[D, w, LP], where D (m) is the 

monopile diameter, w (m) is the monopile 

wall thickness, and LP (m) is the monopile 

length. The optimization is conducted in the 

discretized space of random parameters such 

that  4,4.1,...,7D ,  0.03,0.04,...,0.1w , 

and  25,26,...,40PL  . The design cost of a 

monopile foundation is approximated by a 

cost of Ci=2€/kg of the monopile weight, 

while the expected failure cost is assumed to 

be CF=10
7
€.  
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The RBDO problem is defined as follows: 
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where x=[H, su, φ]
T
 is a vector of random 

parameters composed of H, su random fields 

for the BDK and SBK soil units, and φ 

random field for the EG soil unit, PF(x,t) is 

the probability of exceeding the ultimate 

limit state for a given combination of design 

parameters.  

In this study, the ultimate limit state of a 

monopile foundation is defined by the yield 

strength of the monopile steel, σlim=235 MPa. 

The ultimate limit state can be defined by the 

corresponding performance function: 

 

lim( ', ') ( ', ')g   x t x t  (11) 

 

where σ(x’,t’) is the maximum stress in the 

monopile for a given combination of x’ and 

t’. The probability of exceeding the ultimate 

limit state, for a given combination of design 

parameters t’, PF=P(g(x,t’)≤0) is calculated 

with the SS method (Au & Beck, 2001). The 

SS is an efficient and robust reliability 

method which expresses the reliability 

problem by a series of intermediate 

conditional reliability problems. The 

conditional reliability problems correspond 

to, prior to the analysis unknown, series of 

decreasing intermediate failure limits. The SS 

method provides efficient performance by 

specifying the probabilities of the conditional 

reliability problems sufficiently large (e.g., 

P=0.1) so that they can be evaluated with a 

relatively low number of samples of random 

parameters. 

The reliability of a monopile foundation is 

evaluated with the SS method by defining the 

probabilities of the intermediate conditional 

reliability problems to be P=0.1. The 

conditional probabilities are evaluated with 

200 samples of random parameters. 

The RBDO of a monopile foundation is 

conducted by coupling the SA method and 

the SS method to solve the optimization and 

reliability problems, respectively. The SA is 

a stochastic optimization method applied for 

discrete and continuous optimization 

problems. The SA method is selected due to 

its robust algorithm which is capable of 

avoiding local minima in search of the global 

minimum (e.g.,Spall, 2005). In order to 

integrate the reliability constraint in Eq. 10c 

into the optimization process, the algorithm 

of the SA method is adapted such that 

C(x,t)=∞ in case of reliability constraint 

violation, PF(x,t)>10
-4

. 

6 RESULTS 

The SA optimization is initiated with 

following values of the design parameters: 

t’= [5.5,0.05,30], with PF(x,t’)<10
-4

 and 

C(x,t’) = 4.03 x 10
5€. 

The SA algorithm was employed with 1000 

iterations to locate the minimum design costs. 

For each iteration of the algorithm, the 

probability of exceeding the ultimate limit 

state of the monopile is evaluated with the SS 

method. The SS method is implemented with 

200 simulations of random parameters per 

conditional reliability problem. Since the SA 

method does not provide convergence criteria 

for the estimate of the minimal design cost, 

several independent optimizations are 

conducted to achieve a robust estimate. In 

total seven optimizations with the SA 

algorithm are conducted, as presented in 

Table 2.  

 

Table 2: RBDO results 

C [10
5
€] w [m] Lp [m] D [m] PF [10

-6
] 

2.55 0.04 26 5.0 8.5 

2.60 0.04 26 5.1 4.6 

2.64 0.04 27 5.0 8.5 

2.90 0.04 27 5.7 3.3 

2.70 0.04 27 5.1 8.5 

2.65 0.04 26 5.2 79 

2.75 0.04 26 5.4 39 
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Figure 5 illustrates the results from three 

optimizations with the SA method. It is 

important to note that the estimate of the 

optimal design cost is the minimal design 

cost encountered during the optimization 

process. 

As observed from Table 2 the estimate of the 

minimal design cost is found between 2.55 

and 2.90 x 10
5
 €. The optimal design costs 

correspond to the monopile designs with w of 

0.04 m, Lp 26 or 27 m and D between 5 and 

5.7 m. 

 

 
Figure 5: Design cost with the number of 

iterations of the SA optimization. 

 

The results in Table 2 and Figure 6 

demonstrate that the reliability constraint is 

implemented successfully in the SA 

algorithm. The reliability constraint is 

satisfied throughout the optimization process 

since PF ≤ 10
-4

. The variation in the estimates 

of PF in Table 2 can be attributed to the 

stochastic nature of the SS method. 

 

 
Figure 6: PF with the number of iterations of the 

SA optimization. 

 

 

 

7 CONCLUSION  

This study presented an RBDO of a monopile 

foundation for offshore wind turbines. The 

goal was to minimize the design cost which 

includes the cost of production, installation 

and failure. The RBDO is conducted with the 

Simulated Annealing optimization method 

and the Subset Simulation reliability method.  

The Subset Simulation method is 

implemented to evaluate the probability of 

exceeding the ultimate limit state of a 

monopile foundation with respect to the 

uncertainties in the soil parameters and 

lateral loads.  

Special attention was given to the 

interpretation of soil parameters relevant for 

the design of monopile foundations from 

CPTU measurements. A probabilistic 

interpretation of undrained shear strength and 

friction angle based on CPTU measurements 

is implemented to integrate the inherent soil 

variability of the cone tip resistance with the 

transformation uncertainty associated with 

the corresponding soil parameter. 

This study demonstrated that the reliability-

based design optimization provides a 

consistent framework for dealing with 

uncertainties in the design of monopile 

foundations. 
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